A blow-up result for nonlinear generalized heat equation

نویسندگان

  • M. Kbiri Alaoui
  • S. A. Messaoudi
  • H. B. Khenous
چکیده

Available online xxxx Keywords: Nonlinear heat equation Blow up Sobolev spaces with variable exponents a b s t r a c t In this paper we consider a nonlinear heat equation with nonlinearities of variable-exponent type. We show that any solution with nontrivial initial datum blows up in finite time. We also give a two-dimension numerical example to illustrate our result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BLOW-UP AND NONGLOBAL SOLUTION FOR A FAMILY OF NONLINEAR HIGHER-ORDER EVOLUTION PROBLEM

In this paper we consider a kind of higher-order evolution equation as^{kt^{k} + ^{k&minus1}u/t^{k&minus1} +• • •+ut &minus{delta}u= f (u, {delta}u,x). For this equation, we investigate nonglobal solution, blow-up in finite time and instantaneous blow-up under some assumption on k, f and initial data. In this paper we employ the Test function method, the eneralized convexity method an...

متن کامل

Single Point Blow–up Solutions to the Heat Equation with Nonlinear Boundary Conditions

We study finite blow-up solutions of the heat equation with nonlinear boundary conditions. We provide a sufficient condition for the single point blow-up at the origin and a precise spacial singularity of the blow-up profile. Mathematics subject classification (2010): 35K20, 35B44.

متن کامل

A Numerical Investigation of Blow-up in The Moving Heat Source Problems in Two-dimensions

The temperature of a combustible material will rise or even blow up when a heat source moves across it. In this paper, we study the blow-up phenomenon in this kind of moving heat source problems in two-dimensions. First, a two-dimensional heat equation with a nonlinear source term is introduced to model the problem. The nonlinear source is localized around a circle which is allowed to move. By ...

متن کامل

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

v 1 2 1 Ju n 19 93 Universality in Blow - Up for Nonlinear Heat Equations

We consider the classical problem of the blowing-up of solutions of the nonlinear heat equation. We show that there exist infinitely many profiles around the blow-up point, and for each integer k, we construct a set of codimension 2k in the space of initial data giving rise to solutions that blow-up according to the given profile.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2014